纳米技术在微电子连接上的设计应用
在半导体产业中,微细加工技术是实现器件的集成化和高性能化不可欠缺的技术。但是,在进行微米尺度以下的加工时,必须在清洗环境下排除振动,保持一定的加工环境温度,抑制由热膨胀引发的尺寸变化,因而会增加相当大的成本。
近年来,以美国为主,不少国家开始使用微米连接印刷、毛细管微型模板、浸笔印板术等可以简单地形成纳米结构的新型制造技术,这种新的加工技术被称为柔性印板术。其与微细加工技术的开发点不同,其最大特征是简便且低成本。柔性印板术中的纳米印刷技术,其原理简单,而且已有成型设备在市场上销售。
纳米印刷技术
纳米印刷技术的基本原理就是把有纳米级凹凸图形的模板挤压在涂覆了树脂薄膜的基板上,再在树脂薄膜的表面复制凹凸图形。在普通的纳米印刷技术中,能等倍复制模板,而在高宽比纳米印刷技术中,则能形成高出纳米模板凹部的结构体。
在纳米印刷工程中,首先用旋转法等把树脂薄膜涂覆在玻璃和硅制的基板上,再将树脂薄膜加热,使其复合在基板上。然后,在变软的树脂上挤压纳米模板,最后再把纳米模板从树脂薄膜上脱离开去。通过以上过程,纳米模板表面的图形就被复制在树脂薄膜的表面。
高宽比微细结构的形成
在纳米印刷技术中,将金属凸模挤压树脂薄膜上,便会形成凹部。但要形成平面比较大的细长结构,必须有深度雕刻的纳米模板,因为模板从树脂薄膜脱离时,必然会拉伸树脂,所以能形成高出纳米模板凹部的柱状结构体,这种方法就称为高宽比纳米印刷技术。
在高宽比纳米印刷技术中,可以简单地形成直径为25nm、高3μm(平面比为12)的纳米级柱状结构集合体。该结构在以往的精密塑料成型中是很难形成的,但使用了高宽比纳米印刷技术,用一次压延就能成型。
应用前景
纳米印刷技术被认为是最接近实用化的制造技术,日本已有纳米印刷装置在市场上出售。但为了形成良好的结构体,必须要发展以纳米模板和树脂材料为先导的相关技术。目前,这一研究正在全世界范围内展开。这一技术的应用重点将是电子领域,但也开始涉及边缘能源等领域。
纳米连接技术
纳米粒子所具有的基本特性(如耐久性强、熔点和烧结温度低)是众所周知的,但其很多应用都没有得到拓展。国外有人提出了利用纳米粒子的表面能量与低温烧结功能,把它作为连接材料的新型方案。用该连接法进行低温连接后,经烧结后的纳米粒子会使连接处具有高熔点,这一优点非常适合高温连接较困难的无铅焊接。这里主要介绍应用有机物—银复合纳米粒子的连接工艺特点及其在电子焊接上的适用性。
由于纳米粒子表面呈活性,为防止其自身凝聚必须要做表面控制。我们所用的纳米粒子是平均直径为10nm左右的银纳米粒子,其表面用有机物保护层进行了涂覆。
这种纳米粒子的功能在其有机外壳热分解去除后便展示出来。从DTA曲线来看,在发热反应开始的同时,粒子质量迅速减少,可以认为这时的有机外壳已被分解与去除。而且,当提升加热速度时,分解温度则向高温侧移动。此外,从分解结束温度与加热速度的关系来看,即使把加热速度加快到20℃/m,分解也在265℃左右结束,在300℃以下出现纳米粒子的功能。也就是说,在300℃以下可利用该纳米粒子进行连接
应用有机物—银复合纳米粒子的连接特点
日本大阪大学应用铜质圆板型试验片作银纳米粒子连接试验,分别测出了银微米粒子(平均粒径为100nm)和银纳米粒子的脆断强度。其中,该试验是在300℃、保温300min、加压5Mpa的条件下进行的。纳米粒子连接与微粒子连接相比,显示出了很高的脆断强度。
用电镜分别对各自的连接断面观察,发现用银微米粒子的场合,其与铜的连接面有空隙状缺陷。银微米粒子的触点破坏发生在银/铜界面,所得的5Mpa左右的触点强度被认为是两者簧片的机械连接结果。而银纳米粒子的触点破坏面被认为是银伸长而塑性变形的痕迹,其在界面附近的银层中会断裂。由此可见,用银纳米粒子连接比用银微粒子连接的界面强度更高。
焊接参数对断面强度的影响
从焊接温度、焊接时间、加压等焊接参数对银纳米粒子铜触点断面强度的影响研究来看,焊接温度和加压是影响断面强度的关键参数。在焊接温度方面,强度随着加压增大而上升,但在焊接温度高的情况下,加压的影响会变小。另外就焊接温度而言,加压低的情况下,焊接温度对强度影响大,而加压增高时则焊接温度的影响变小。所以,在260℃左右的温度下加大压力,而尽可能在低加压场合提高连接温度,这样做才最有效。
应对高温无铅焊接的可能性
银纳米粒子连接法的一个最佳应用,就是在电子领域的高温无铅焊接中。为实现安装用焊料的无铅化,人们一直在积极开发新的替代品。原来使用的Sn-Pb共晶焊料(属低中温焊料)将由Sn-Zn系代替。但对于封装内焊接所使用的富铅焊料(Pb≥85%的Sn-Pb焊料),目前还没有合适的替代品。
在现行富铅高温焊料液相温度(300℃、315℃)以下的温度范围内(260℃~300℃),银纳米粒子焊接工艺可以使用。银纳米粒子不仅有与Pb-5Sn相匹敌的强度,而且可以在低温、低压等较宽的连接条件下使用。其次,无论是升温还是增压,银纳米粒子连接的断面强度都是其他两者无可比拟的。而且,该连接的连接处有高熔点,所以在随后的2次焊接等热工艺中不会熔化。另外,就芯片键合部所要求的电气传导度和热传导性而言,由于连接处是由金属银形成的,所以一定比现行高温焊料的特性还要好。
作为纳米粒子工业的新开发,银纳米粒子连接工艺有更大的应用范围。对此,浩隆电子的专家表示还必须做详细的连接机理以及与Cu以外各金属连接性的基础研究。另外,在电子安装的实用化方面,还必须用实际的水准来检验连接处的电气特性与耐环境可靠性。
相关文章
更多>>- 纳米圆形连接器之契机04-29
- 连接器朝毫微型过渡的最佳方案:纳米圆形连接器03-02
- 英特尔官方公告:于第四季度开始生产32纳米C09-23